
16 The material in this chapter has been previously published in Rocha [1994a, 1995d, 1996b,
1997a, 1997b, 1997c], Rocha, Kreinovich and Kearfott [1996] and Henry and Rocha [1996].
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CHAPTER 3

EVIDENCE SETS: CONTEXTUAL CATEGORIES16

1. Cognitive Categorization

"Most of our words and concepts designate categories. [...] Categorization is not a matter to be taken lightly.
There is nothing more basic than categorization to our thought, perception, action, and speech. Every time
we see something as a kind of thing, for example, a tree, we are categorizing. [...] An understanding of how
we categorize is central to any understanding of how we think and how we function, and therefore central to
an understanding of what makes us human". [Lakoff, 1987, pages xiii, 5, and 6]

Categories are bundles of concepts somehow associated in some context. Cognitive agents survive
in a particular environment by categorizing their perceptions, feelings, thoughts, and language. The
evolutionary value of categorization skills is related to the ability cognitive agents have to discriminate and
group relevant events in their environments which may demand reactions necessary for their survival. If
organisms can map a potentially infinite number of events in their environments to a relatively small number
of categories of events demanding a particular reaction, and if this mapping allows them to respond
effectively to relevant aspects of their environment, then only a finite amount of memory is necessary for an
organism to respond to a potentially infinitely complex environment. In other words, only through effective
categorization can knowledge exist in complicated environments.

Thus, knowledge is equated with the survival of organisms capable of using memories of
categorization processes to choose suitable actions in different environmental contexts. It is not the purpose
here to dwell into the interesting issues of evolutionary epistemology [Campbell, 1974; Lorenz, 1971]; I
simply want to start this discussion by positioning categorization as a very important aspect of the survival
of memory empowered organisms. Understanding categorization as an evolutionary (control) relationship
between a memory empowered organism and its environment, implies the understanding of knowledge not
as a completely observer independent mapping of real world categories into an organism's memory, but rather
as the organism's, embodied, thus subjective, own construction of relevant – to its survival – distinctions in
its environment. This is the basis for the evolutionary constructivist position discussed in chapter 2.

Since effective categorization of a potentially infinitely complex environment allows an organism
to survive with limited amounts of memory, we can also see a connection between uncertainty and
categorization. George Klir [1991] has argued that the utilization of uncertainty is an important tool to tackle
complexity. If the embodiment of an organism allows it to recognize (construct) relevant events in its
environment, but if all the recognizable events are still too complex to grasp by a limited memory system,
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the establishment of one-to-many relations between tokens of these events and the events themselves, might
be advantageous for its survival. In other words, the introduction of uncertainty may be a necessity for
systems with a limited amount of memory, in order to maintain relevant information about their environment.
Thus, it is considered important for models of human categories to capture all recognized forms of
uncertainty.

Lakoff [1987] has stressed the relevance  of the idea of categories as subjective constructions of
any beings doing the categorizing, and how it is at odds with the traditional objectivist scientific paradigms.
In the following, I will address the historical relation between set theory and our understanding of categories;
in particular, I will discuss what kind of extensions we need to impose on fuzzy sets so that they may become
better tools in the modeling of subjective, uncertain, cognitive categories.

1.1 Models of Cognitive Categorization

It is important to separate the idea of a model of cognitive categorization and a model of a category.
Though obviously dependent on one another, categories are included in more general models of cognitive
categorization and knowledge representation. Agreeing on what the structure of a category might be, is far
from agreeing on what the structure and workings of cognitive categorization models should be. It is also a
simpler problem. Lakoff [1987], for instance, proposes a theory of knowledge organization based on
structures called idealized cognitive models (ICM), which contain categories as their substructures or by-
products. Other similar models of knowledge organization exist: schema theory [Rumelhart, 1975], frames
with defaults [Minsky, 1975], frame semantics [Fillmore, 1982], Dynamic Type Hierarchies [Way, 1991],
etc. These models of knowledge organization vary in some ways; Lakoff's ICM's possess in addition to a
propositional structure, a subject-dependent physiological structure, and metaphoric and metonymic
mappings; in contrast to, for instance, Minsky’s purely propositional frames with defaults.

Though, undoubtedly, the specific model of knowledge organization selected will dictate some of
the properties of categories, the particular structure chosen to represent categories in such models does not
have to offer an explanation for knowledge organization. All that is asked of a good category representation,
is that it may allow the larger imbedding model of knowledge representation to function. For instance, if we
use mathematical sets to represent categories, our models of knowledge representation may use set theory
connectives and/or they may use more complicated sets of mappings or even introduce connectionist
machines to produce the sets [Clark, 1993]. Thus, evaluating sets as prospective representations of categories
should be done by analyzing the kinds of limitations they necessarily impose on any kind of model, and not
simply models circumscribed to basic set-theoretic operations.

1.2 The Classical View

The classical theory of categorization defines categories as containers of elements with common
properties. Naturally, the classic, crisp, set structure was ideal to represent such containers: an element of
a universe of observation can be either inside or outside a certain category, if it has or has not, respectively,
the defining properties of the category in question. Further, all elements have equal standing in the category:
there are no preferred representatives of a category – all or nothing membership.

One other characteristic of the classical view of categorization has to do with an observer
independent epistemology: realism or objectivism. Cognitive categories were thought to represent objective
distinctions in the real world; say,  divisions between colors, between sounds, were all assumed to be
characteristics of the real world independent from any beings doing the categorizing. Frequently, this
objectivism is linked to the way classical categories are constructed on all-or-nothing sets of objects: "if
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categories are defined only by properties inherent in the members, then categories should be independent of
the peculiarities of any beings doing the categorizing" [Lakoff, 1987, page 7]. I do not subscribe to this point
of view; we can use classical categories both in realist or constructivist epistemologies. Even with classical,
all-or-nothing, categories, the properties  are never considered inherent in the members, there is always
something defining the necessary list of properties: the external observer/constructor  [Medina-Martins and
Rocha, 1992]. The question is who or what is to establish the shared properties of a particular category. A
model, where these shared properties are regarded as observer dependent, that is, established in reference
to the particular physiology and cognition of the agent doing the categorizing, is built under a constructivist
epistemology. If on the other hand, these properties are considered to be the one and ultimate truth of the real
world, then the aim is the definition of an objectivist model of reality. 

Most modern theories of categorization will include classical categories as a special case of a more
complex scheme, which does not imply that some categories are objective and others are subjective. Thus,
classical categories have to do with an all-or-nothing description of sets, based on a list of shared properties
defined in some model. This external model is indeed built within an objectivist epistemology in the classical
approach,  but these two aspects of the classical theory of categorization are not necessarily dependent. The
chosen structure of categories and the chosen model of knowledge representation/manipulation, which can
be realist or constructivist, may be independent  concerns when modeling cognitive categorization.

1.3 Prototype Theory and Fuzzy Sets

Rosch [1975, 1978] proposed a theory  of category prototypes in which, basically, some elements
are considered better representatives of a category than others. It was also shown that most categories cannot
be defined by a mere listing of properties shared by all elements. Some approaches define this degree of
representativeness as the distance to a salient example element of the category: a prototype [Medin and
Schaffer, 1978]. More recently, prototypes have been accepted as abstract entities, and not necessarily a real
element of the category [Smith and Medin, 1981]. An example would be the categorization of eggs by
Lorenz’[1981] geese, who seem to use an abstract prototype element based on such attributes as color,
speckled pattern, shape, and size. It is easy to fool a goose with a wooden egg if the abstract characteristics
of the prototype are emphasized.

Naturally, fuzzy sets became candidates for the simulation of prototype categories on two counts:
(i) membership degrees could represent the degree of prototypicality of a concept regarding a particular
category; (ii) a category could also be defined as the degree to which its elements observe a number of
properties, in particular, these properties may represent relevant characteristics of the prototype. These two
points are distinct. The first makes no claim whatsoever on the mechanisms of creation and manipulation of
categories. It may be challenged, as I will do in the sequel, on the grounds that due to its simplicity, models
using it must be extremely complicated. Nonetheless, it does offer the minimum requirement a category must
observe: a group (set) of elements with varying degrees of representativeness of the category itself. 

Now, the second point goes beyond the definition of a category and enters the domain of modeling
the creation of categories. As in the classic case, categories are seen as groups of elements observing a list
of properties, the only difference is that elements are allowed to observe these properties to a degree.
However, the so called radial categories [Lakoff, 1987] cannot be formed by a listing of properties shared
by all its elements, even if to a degree. They refer to categories possessing a central subcategory core, defined
by some coherent (to a model or context) listing of properties, plus some other elements which must be
learned one by one once different contexts are introduced, but which are unpredictable from the core's



17An example of a radial category [after Lakoff, 1987] is the category of mother. A listing of core properties
to be considered a member of this category, coherent in the context of birth, would be, for instance: woman who
gives birth, raises, nurtures, educates a child. However, members of the category of mother exist which do no obey
such listing: adoptive mother, surrogate mother, genetic mother, etc. These members do not obey the list, or obey it
only to a very small degree; however, though not prototypes, they are elements of the category mother. They are also
not random elements, but are unpredictable until a different context is introduced.
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context and its listing of shared properties17. Thus, the second interpretation of fuzzy sets as categories leads
fuzzy logic to  a corner which renders it uninteresting to the modeling of cognitive categorization. Notice that
Rosch herself made a distinction between the notion of category prototypes and the notion of knowledge
representation:

"Prototypes do not constitute any particular processing model for categories [...]. What the facts about
prototypicality do contribute to processing notions is a constraint & process models should not be
inconsistent with the known facts about prototypes. [...] As with processing models, the facts about
prototypes can only constrain, but do not determine, models of representation." [Rosch, 1978, pg. 40]

1.4 Dynamic Categories

As Hampton [1992] and Clark [1993] discuss, the important question to ask at this point is “where
do the distance degrees come from?” Barsalou [1987] has shown how the prototypical judgments of
categories are very unstable across contexts. He proposes that these judgements, and therefore the structure
of categories, are constructed “on the hoof” from contextual subsets of information stored in long-term
memory. The conclusion is that such a wide variety of context-adapting categories cannot be stored in our
brains, they are instead dynamic categories which are rarely, if ever, constructed twice by the same cognitive
system. Categories have indeed Rosch’s graded prototypicality structure, but they are not stored as such,
merely constructed “on the hoof” from some other form of information storage system.

“Invariant representations of categories do not exist in human cognitive systems. Instead, invariant
representations of categories are analytic fictions created by those who study them.” [Barsalou, 1987, page
114]

As Clark [1993] points out, the reason for this is that since the evidence for graded categories is
so strong, even in ad hoc categories such as “things that could fall on your head” or viewpoint-related
categories, “it seems implausible to suppose that the gradations are built into some preexisting conceptual
unit or prototype that has been simply extracted whole out of long-term memory.” [Ibid, page 93] Thus, we
should take the graded prototypical categories as representations of these highly transient, context-dependent
knowledge arrangements, and not of models of information storage in the brain. In the following, the
extensions of fuzzy sets proposed to model cognitive categories should be understood as such. 

As for the modeling of cognitive categorization itself, an attempt to model certain aspects of it is
developed with an extended theory of approximate reasoning, which is used on a computational system of
database retrieval developed in chapter 5.  In section 6, this extended theory of approximate reasoning is
developed.



18 A )-algebra is a class of X that contains X and is closed under the formation of complements
and countable unions.
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1.5 Fuzzy Objectivism

With fuzzy sets and approximate reasoning Zadeh [1965, 1971] substitutes a classic logic of truth
by a  logic of degrees of truth: instead of having members of classes/categories which belong or not belong
to it, we have members that possibly belong to a category to a certain degree.  Lakoff [1987] believes that
the utilization of degrees of truth adds nothing to the main shortcoming of classical categories, as they are
usually thought of as objective graded degrees that exist in the real world; objectivism is merely replaced by
fuzzy objectivism.  Now, even if Zadeh’s initial formulation of fuzzy sets may have been indeed a realist one,
nothing prevents us from using fuzzy sets as representations of categories within a constructivist
epistemology. Categories defined by fuzzy sets may represent degrees of prototypicality which may vary
according to contexts introduced in  imbedding models of categorization processes. In particular, a model
may take into account levels of physiological subjectivity as desired by Lakoff [1987]. A computational
example of such a model has been developed  by Medina-Martins and Rocha [1992; Medina-Martins, Rocha,
et al, 1994; Medina-Martins, 1995]. 

Since fuzzy sets, at least to a degree, can be included in realist or constructivist frameworks, its
dismissal as good models of cognitive categories has to be made on different grounds. In the following I will
maintain that fuzzy sets are unsatisfactory because they (i) lead to very complicated models, (ii) do not
capture all forms of uncertainty necessary to model mental behavior, and (iii) leave all the considerations of
a logic of subjective belief to the larger imbedding model, which makes them poor tools in evolutionary
constructivist approaches. A formal extension based on evidence theory is proposed next.

2. Mathematical Background

Let X denote a nonempty universal set under consideration. Let ?? (X) denote the power set of X.
An element of X represents a possible value for a variable x. X can be countable or uncountable. The term
continuous domain is often used to refer to the latter case. However, since continuity is a notion applicable
to functions not sets, I will use the term "uncountable set" to refer to those sets with uncountably many
elements. An uncountable set is by definition an infinite set, a countable set can be both finite or infinite.

2.1 Measures

Let µ be an extended real valued measure on a )-algebra18 44 of X: µ: 44 â[0, �]. µ is countably

additive for any numerable disjoint sequence {An} of sets in 44:
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also, } A I X such that µ (A) < � and µ(L)=0,   From the additivity requirement (1) the following
monotonicity condition is obtained:  µ(A) � µ(B), when A I B. The monotonicity further implies that:
max µ(A) = µ(X), and min µ(A) = µ(L) = 0, where AIX.  

Since 44 is closed to the intersection of its elements, and since  µ is additive and monotone, it is also

countably subadditive for any sequence {Ai} of sets in 44 such that :A 
 �
�

i
1 Ai

A nonadditive measure (or fuzzy measure) is defined by the same boundary conditions and
condition of monotonicity, but the additivity requirement is relaxed to one of continuity. See Wang and Klir
[1992] for details unnecessary for the purposes of this dissertation.

2.2. Dempster-Shafer Theory of Evidence

2.2.1 Basic Probability Assignment

Evidence theory, or Dempster-Shafer Theory (DST) [Shafer, 1976], may be defined in terms of a
set function m:

 m: ?? (X) Ú [0, 1]
referred to as a basic probability assignment, such that m(L) = 0 and

The value m(A) denotes the proportion of all available evidence which supports the claim that A

� ?? (X) approximately represents the actual value of our variable x.  m(A) qualifies A alone, it does not imply
any additional claims regarding other subsets of X, including subsets of A or the complement of A. 

2.2.2 Belief and Plausibility

DST is based on a pair of nonadditive measures: belief (Bel) and plausibility (Pl). These measures
observe axioms of superadditivity and subadditivity respectively [for more details see Wang and Klir, 1992].

Given a basic probability assignment m, Bel and Pl are determined for all A � ?? (X) by the equations:

(3), (4), and (5) imply that belief and plausibility are dual measures related by:
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for all A � ?? (X), where Ac represents the complement of A in X. It is also true that Bel(A)�Pl(A) for all A �

?? (X). Notice that [Shafer, 1976, page 38] , "m(A) measures the belief one commits exactly to A, not the total
belief that one commits to A." Bel(A), the total belief committed to A, is instead given by the sum of all the
values of m for all subsets of A (4).

2.2.3 Focal Elements and Bodies of Evidence

Any set A � ��?? (X)  with m(A) > 0 is called a focal element. A body of evidence is defined by the

pair (55, m), where 55  represents the set of all focal elements in X, and m the associated basic probability

assignment. 55 is assumed to be finite, that is, there is a finite number of focal elements in a body of evidence,
even if the universal set X is infinite. This is an important consideration which is utilized throughout the
dissertation. Kramosil [1995] has developed a more complete extension of DST to infinite domains which

considers cases where the set of all focal elements in X, 55, is infinite. Since the applications I have in mind
require only a finite number of focal elements, I will not consider extensions of DST such as those of
Kramosil.

The set of all bodies of evidence is denoted by 11. Total ignorance is expressed in DST by m(X) = 1
and m(A) = 0 for all A g X. Full Certainty is expressed by m({ x}) = 1 for one particular element of X, and
m(A) = 0 for all A g {x}.

2.2.4 Dempster’s rule of combination

In the context of evidence theory, the universal set X is referred to as the frame of discernment.
Given two pairs of dual belief-plausibility measures, Bel1-Pl1 Bel2-Pl2, over the same of frame of discernment
X, but based on different bodies of evidence (5, m)1, (5, m)2, the resulting, combined, body of evidence, (5,
m)1,2, is defined by the following basic probability assignment:

where 51,2 is the set of all non-empty subsets C of X resulting from the intersection of each focal element Ai

of 51 with each focal element Bj of 52.  (7) is referred to as the Dempster's rule of combination.

2.2.5 Joint Bodies of Evidence

We further need to understand properties of bodies of evidence defined on the Cartesian product
of two sets: Z = X × Y. That is, bodies of evidence defined by joint basic probability assignment functions:

m: ?? (X × Y) â [0, 1], obeying equation (3) above, where X and Y denote sets defining the domain of two
distinct variables. The focal elements are binary relations, R, defined on Z. The projections of R on X and
Y are given, respectively, by the sets:



19 To visualize this, consider an “L” shaped focal element of X × Y, its projections RX and RY will be the
same as those of a focal element given by a rectangle with the same width and length as the L-shaped one. The
rectangle clearly contains the “L”-shaped focal element.
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RX = {x � X 
 (x,y) � R for some y � Y}

RY = {y � Y 
 (x,y) � R for some x � X}.

From these we can calculate the marginal basic probability assignments, mX and mY, from the
joint basic probability assignment m:

Two bodies of evidence (5X, mX) and (5Y, mY) are noninteractive if and only if for all A �  5X and

for all B � 5Y:

and m(R) = 0 for all R g A × B. Noninteractive joint bodies of evidence can be completely recuperated from
their projected marginal bodies of evidence: R = RX × RY. In general we have instead: R I Rx × RY

19.

2.2.6 Inclusion

Following Dubois and Prade [1986, 1987], we can also consider the idea of inclusion in DST.

Given two bodies of evidence (551, m1) and (552, m2) on X, (551, m1) I (552, m2)  if and only if:

(i) ~ A � 551, } B � 552, such that AIB,

(ii) ~ B � 552, } A � 551, such that AIB,

(iii) } w: ?? (X × X) â [0, 1], with w(A, B) = 0 ~ A Õ 551, or B Õ 552, 
such that ~A I X, , ~B I X, m1(A) 
 MB
AIB

w(A,B) m2(B) 
 MA
AIB
w(A,B)

2.3 Fuzzy Sets and Interval Valued Fuzzy Sets

A crisp set entails no uncertainty in its membership assessment: if an element x of X is a member
of a set A I X, then it will not be a member of its complement Ac I X. A fuzzy set introduces fuzziness as



20 This is the definition of a standard fuzzy set. Other types of fuzzy sets exist, some of which are
introduced throughout this chapter. In the following, unless otherwise noticed, the name fuzzy set refers
to this definition of standard fuzzy set.

21 Notice that both crisp and fuzzy sets capture nonspecificity in the cardinality of their elements.
The inclusion of nonspecificity discussed here is in the formalization of their membership degrees, which
in this sense, represents a second-order nonspecificity.
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Figure 1: Fuzzy Sets, IVFS, and Uncertainty. The
right column uses Kosko’s hypercube
representation of a fuzzy set with 2 elements.

the above law of contradiction is violated: x can both be a member (to a degree)  of A and Ac . A fuzzy set20

A is defined by a membership function .A: X� [0,1]
Fuzzy sets can be extended to interval valued fuzzy sets (IVFS), a case of probabilistic sets [Hirota,

1981] and type 2 fuzzy sets [Zadeh, 1975]. A probabilistic set A assigns to each element, x of X, a probability
distribution defined on [0, 1] describing its membership: . P represents the set of allA: X� ([0,1],P)
probability distributions on [0,1]. A type 2 fuzzy set assigns to each element x of X , a fuzzy set, defined on
[0, 1]: �: X Y  F([0,1]). F([0,1]) is the set of all possible fuzzy sets defined on [0,1]. However, we do not
need a probabilistic/possibilistic representation to define an IVFS; all we need is to assign an interval of

[0, 1] to each element x of X : �: X Y 88([0,1]), where 88 represents the set of intervals in [0, 1]. The greatest
advantage of IVFS over probability/possibilistic sets is their comparative simplicity: probability or
possibility distributions need an extensive and precise amount of information that is usually not obtainable
in relevant applications. Conversely, an IVFS does
not require much more information than a fuzzy set,
simply an upper and a lower limit to its interval of
membership. Moreover, an IVFS offers a kind of
uncertainty fuzzy sets cannot capture and which
probabilistic and possibilistic sets initially aimed at
[Hirota, 1981]. Basically, it is not always possible
to unequivocally specify a single membership value
for some linguistic category we wish to model
[Gorza�czany, 1987], as fuzzy sets demand.

IVFS offer, in addition to fuzziness, a
nonspecific description of membership in a set; and
they do so with very little information requirements.
An IVFS A, for each x in X, captures two forms of
uncertainty (see below): fuzziness (as in the case of
normal fuzzy set) and nonspecificity. The
membership degrees of standard fuzzy sets are
absolutely specific. When we create a fuzzy set we
have perfect knowledge of the degree to which a
certain element x of X belongs to A. In contrast, when we create an IVFS we have nonspecific knowledge
of the degree of membership; hence the utilization of an interval to describe the membership of x in A21

2.4 Uncertainty

The notion of uncertainty, is very relevant to any discussion of the modeling of linguistic/mental
abilities. From Zadeh's [1971, 1975, 1978] approximate reasoning to probabilistic and even evidential
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reasoning [Schum, 1994], uncertainty is more and more recognized as a very important issue in cognitive
science and artificial intelligence with respect to the problems of  knowledge representation and the modeling
of reasoning abilities [Shafer and Pearl, 1990].  Engineers of knowledge based systems can no longer be
solely concerned with issues of linguistic or cognitive representation, they must describe "reasoning"
procedures which enable an artificial system to answer queries. In many artificial intelligence systems, the
choice of the next step in a reasoning procedure is based upon the measurement of the system’s current
uncertainty state [Nakamura and Iwai, 1982; Medina-Martins and Rocha, 1992, Medina-Martins et al, 1993,
1994; see chapter 5].  Thus, we need to collect an array of effective uncertainty measures in order to improve
current models of knowledge representation.

George Klir [1993; Klir and Yuan, 1995] classifies uncertainty into two main forms: ambiguity and
fuzziness. Ambiguity is further divided into the categories of nonspecificity and conflict. Webster [Random
House Webster's Dictionary, 1991] defines ambiguity as: 1. doubtfulness or uncertainty of meaning or
intention: to speak with ambiguity. 2. the condition of admitting more than one meaning. Mathematically
ambiguity is identified with the existence of one-to-many relations, that is, when several alternatives exist
for the same question or proposition.  DST provides an ideal framework for the study of ambiguity, as it
enlarges the scope of traditional probability theory, and it can be interpreted in terms of the possible-world
semantics of classical modal logics [Resconi, et al, 1993].  As measures of ambiguity, we are looking for

functions of the form: f: 11 â [0, �), where 11 is the set of bodies of evidence defined on X.
Notice that the measures of ambiguity f, or more generally measures of uncertainty based

information [Klir, 1993], are not classical measures as defined in section 2.1. The former are functions
defined on bodies of evidence, while the latter are set functions with the axioms of section 2.1. Indeed, even
though sharing the same term ‘measure’, they refer to quite distinct mathematical concepts. Classical
measures are associated with the definition of metric spaces and topologies, while uncertainty measures are
defined to capture amounts of information in uncertain situations. In this dissertation, the uncertainty
framework chosen to deal with ambiguity is the Dempster-Shafer theory of evidence, thus, uncertainty
measures are defined on bodies of evidence. In other words, measures of uncertainty require first and
foremost a mathematical framework for uncertainty, while measure theory is based on set theory alone.
Furthermore, as it will be discussed in the following sections, measures of uncertainty are often required to
follow an axiom of additivity quite distinct from the additivity requirement of a classical measure. The two
should not to be confused since they refer to different mathematical concepts that unfortunately share the
same names.

2.4.1 Conflict

Conflict is identified with disagreement between several alternatives. The word disagreement
implies the existence of some distinctive criteria between the several alternatives. When it is possible to
distinguish between the several alternatives of some event or proposition, we have conflict amongst
alternatives. In probability theory, conflict is measured with the Shannon measure of entropy. In evidence
theory, the probabilistic entropy is efficiently extended to a measure of uncertainty named Strife [Vejnarová
and Klir, 1993]:

This measure was developed from another measure used to quantify conflict in DST named discord
which was originally proposed by Klir and Ramer [1990]. Discord, instead of using the degree of subsethood
of set A in B ( ), uses the degree of subsethood of set B in A ( ).Arguments for
ABB
/
A
 
ABB
/
B




22Possibility understood as the truth-value representation of fuzzy logic propositions, not to normalized
possibility distributions in the current interpretations of possibility theory [de Cooman et al, 1995].
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introducing strife are discussed by Klir and Parviz [1992]. Klir and Yuan [1993] have observed that the
distinction between strife and discord reflects the distinction between disjunctive and conjunctive set valued
statements [Klir and Wierman, 1997]. In the following only the measure of strife is used, since all
developments proposed for the measure of strife can be trivially extended to discord.

2.4.2 Nonspecificity

Nonspecificity, is identified with unspecified distinctions between several alternatives, that is,
when we possess several alternatives which are equally possible, or probable. "[Nonspecificity] is connected
with sizes (cardinalities) of relevant sets of alternatives." [Klir, 1993, page 276] In the formal domain, this
is expressed by the weighted average of the Hartley measure of information:

2.4.3 Fuzziness

Fuzziness is usually identified with lack of sharp distinctions; other synonyms of the word fuzzy
include: blurred, indistinct, unclear, vague, ill-defined, out of focus, not clear, indefinite; shadowy, dim,
obscure; misty, hazy, murky, foggy; confused [Random House Webster's Dictionary, 1991]. Fuzzy sets are
usually used to formalize this kind of uncertainty. The elements of a fuzzy set are in it included according
to a membership degree between 0 and 1. In Fuzzy Logic terms, the truth value of  a proposition, now a
possibility value, ranges between 0 and 1. There are several ways of measuring fuzziness [Klir, 1993], but
the most modern approaches define a measure of fuzziness as the lack of distinction between a set and its
complement [Yager, 1979, 1980]. "Indeed, it is precisely the lack of distinction between sets and their
complements that distinguishes fuzzy sets from crisp sets. The less a set differs from its complement, the
fuzzier it is." [Klir, 1993, page 298] In other words, the more something is and is not, at the same time, the
fuzzier it is.  As truth is substituted for possibility, we find that what is possible to a degree, is also not
possible to the inverse degree& in the limit, when something is possible and not possible to the same degree
(½) we have paradox22. A measure of fuzziness usually defined within this interpretation of fuzziness is given
by: 

which sums the lack of distinction between the membership of each element x of the universal set X, in a
fuzzy set A and in its complement.



23Triangular norms (t-norms) and triangular conorms (t-conorms) are the general names given to the
families of fuzzy intersections and unions respectively. Those t-norms that uniquely determine a dual t-conorm, and
vice versa are referred to as conjugate pairs of t-norms and t-conorms.
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3. Sets and Cognitive Categorization

3.1 Fuzzy Sets and the Prototype Combination Problem

Whenever fuzzy set models of cognitive categories have been proposed, a model of cognitive
categorization or human reasoning has also been included in the package. Zadeh [1975] proposed a theory
of approximate reasoning based of fuzzy predicate logic. Gorza�czany [1987] proposed a method of inference
in approximate reasoning based on interval-valued fuzzy sets. Turksen [1986] presented a method of concept
combination based on the idea that fuzzy sets, when combined, should introduce a second degree level of
uncertainty. Bo Yuan et al [1994] also investigate an interval valued fuzzy set approach to approximate
reasoning based on normal forms. Atanassov [1986; Atanassov and Gargov, 1989] introduced the concept
of intuitionistic fuzzy sets and intuitionistic interval valued  fuzzy sets together with a whole set of operators
[Atanassov, 1994] leading to yet another form of approximate reasoning. These are some of the available
models of fuzzy reasoning based on fuzzy categories.

As previously discussed, fuzzy sets are actually fairly accurate representations of categories simply
because they are able to represent prototypicality (understood as degree of representativeness); how the
prototype degrees are constructed is, on the other hand, a different matter. Fuzzy sets are simple
representations of categories which need much more complicated models of approximate reasoning than
those fuzzy predicate logic alone can provide in order to satisfactorily model cognitive categorization
processes. Critics [Osherson and Smith, 1981; Smith and Osherson, 1984; Lakoff, 1987] have shown that
the several fuzzy logic connectives (e.g. conjunction and disjunction) based on different conjugate pairs of
t-norms and t-conorms23, cannot conveniently account for the prototypicality of the elements of a complex
category, which may depend only partially on the prototypicality of these elements in several of its constitu-
ent categories and may even be larger (or smaller) than in any of these. This is know as the prototype
combination problem.

A complex category is assumed to be formed by the connection of several other categories.
Approximate reasoning defines the sort of operations that can be used to instantiate this association. Smith
and Osherson's [1984] results, showed that a single fuzzy connective cannot model the association of entire
categories into more complex ones. Their analysis centered on the traditional fuzzy set connectives of (max-
min) union and intersection. They observed that max-min rules cannot account for the membership degrees
of elements of a complex category which may be lower than the minimum or higher than the maximum of
their membership degrees in the constituent categories.  Their analysis is very incomplete regarding the full-
scope of fuzzy set connectives, since we can use other operators  [see Dubois and Prade, 1985], to obtain any
desired value of membership in the [0, 1] interval of membership. However, their basic criticism remains
valid: even if we find an appropriate fuzzy set connective for a particular element, this connective will not
yield an accurate value of membership for other elements of the same category. Hence, a model of cognitive
categorization which uses fuzzy sets as categories will need several fuzzy set connectives to associate two
categories into a more complex one (in the limit, one for each element). Such model will have to define the
mechanisms which choose an appropriate connective for each element of a category. Therefore, a model of
cognitive categorization based solely on fuzzy sets and their connectives will be very complicated and
cumbersome.  No single fuzzy set connective can account for the exceptions of different contexts, thus the
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necessity of a complex model which recognizes these several contexts before applying a particular connective
to a particular element.

The prototype combination problem is not only a problem for fuzzy set models, but for all models
of combination of prototype-based categories. Fodor [1981] insists that though it is true that prototype effects
obviously occur in human cognitive processes, such structures cannot be fundamental for complex cognitive
processes (high level associations): “there may, for example, be prototypical cities (London, Athens, Rome,
New York); there may even be prototypical American Cities (New York, Chicago, Los Angeles); but there
are surely not prototypical American cities situated on the east coast just a little south of Tennessee.”[Ibid,
page 297] As Clark [1993] points out, the problem with Fodor’s point of view, and indeed the reason why
fuzzy set combination of categories fails, is that “he assumes that prototype combination, if it is to occur,
must consist in the linear addition of the properties of each contributing prototype.” [Ibid, page 107] Clark
proposes the use of connectionist prototype extraction as an easy way out of this problem. In fact, a neural
network trained to recognize certain prototype patterns, e.g. some representation of “tea” and “soft drink”,
which is also able to represent a more complex category such as “ice tea”, “does not do so by simply
combining properties of the two ‘constituent’ prototypes. Instead, the webs of knowledge structure associated
with each ‘hot spot’ engage in a delicate process of mutual activation and inhibition.” [Ibid, page 107] In
other words, complex categories are formed by nonlinear, emergent, prototype combination. 

As Clark himself points out, however, this ability to nonlinearly combine prototypes in
connectionist machines is a result of the pre-existence of a (loosely speaking) semantic metric which relates
all knowledge stored in the network. It is not a proper metric since it may not follow the triangle inequality,
but the kind of distance in which the shortest distance between two stored concepts may not be the straight
line, often referred to as semi-metric. In any case, through the workings of the network with its inhibition and
activation signals, new concepts can be learned which must somehow relate to the existing knowledge
previously stored. Therefore, any new knowledge that a connectionist device gains, must be somehow related
to previous knowledge. This dependence prevents the sort of open-ended conceptual combination that we
require of higher cognitive processes. 

This problem might be rephrased by saying that connectionist devices can only make nonlinear
prototype combinations given a small number of contexts. We often use a network to classify, say, sounds,
another one images, and so sorth. In their own contexts, each network combines prototypes into more
complex ones, but they cannot escape their own contexts. I believe, with Clark, that connectionist machines
are nonetheless very powerful, even given these constraints. The approach I am about to follow, is not
proposed to be used instead of connectionist devices, but one that may offer a more high-level treatment of
the contextual problem in prototype combination. In fact, in chapter 5, a computational model is presented
that even though not using connectionist machines (distributed memory), uses networked relational databases
that also possess semantic semi-metrics and which can approach this contextual problem.

3.2 Interval Valued Fuzzy Sets

As discussed in the previous section, fuzzy sets have extremely limited abilities to model the
combination of prototypical categories. They can only work on very limited contexts, whose categories can
be formed from the linear combination of constituent categories. The Introduction of a theory of approximate
reasoning based on interval valued fuzzy sets [Gorza�czany, 1987; Türk·en, 1986] represents a step forward
in the modeling of cognitive categorization, as it offers a second level of uncertainty, but it only slightly
improves the contextual problem referred above. The membership degrees of IVFS are nonspecific (see
section 2.3). This second dimension of uncertainty allows us to interpret the interval of membership of an
element in a category as the membership degree of this element according to several different contexts,
which we cannot a priori identify.
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In particular, Turksen's concept combination mechanisms are based on the separation of the
disjunctive and conjunctive normal forms of logic compositions in fuzzy logic. A disjunctive normal form
(DNF) is formed with the disjunction of some of the four primary conjunctions, and the conjunctive normal
form (CNF) is formed with the conjunction of some of the four primary disjunctions:

. In two-valued logic the CNF and DNF of a logic com-ABB, AB B̄, ĀBB, ĀB B̄ and AAB, AA B̄, ĀAB, ĀA B̄
position are equivalent: CNF = DNF. Turksen  observed that in fuzzy logic, for certain families of conjugate
pairs of t-norms and t-conorms, we have instead DNF I CNF for some of the fuzzy logic connectives. He
then proposed that fuzzy logic compositions could be represented by IVFS's given by the interval [DNF,
CNF] of the fuzzy set connective chosen [Turksen, 1986].  With IVFS based connectives, Turksen was able
to deal more effectively with the shortcomings of a pure fuzzy set approach. In his model, two fuzzy sets are
combined into an IVFS. The fuzzy and nonspecific degrees of membership of the elements in the category
obtained, can be interpreted as inclusion in a category according to several possible, fuzzy degrees.

Turksen's model simplifies the pure fuzzy set approach since we will find more categories which
can be combined into complex categories with a single connective used for all elements of the universal set,
though it will not work for all radial categories. The IVFS approach provides a way to acknowledge the
existence of contextual nonspecificity in complex category formation, thus producing a more accurate repre-
sentation of different forms of uncertainty present in such processes. The problem is that categories demand
membership values which more than nonspecific can be conflicting. That is, the contextual effects may need
more than an interval of variance to be accurately represented. Also, even though IVFS use nonspecific
membership, thus allowing a certain amount of  contextual variance, the several contexts are not explicitly
accounted for in the categorical representation. Section 4 proposes set structures which (i) capture all
recognizable forms of uncertainty in their membership representation, (ii) point explicitly to the contexts
responsible for a certain facet of their membership representation, and (iii) in so doing, introduce a
formalization of belief.

3.3. Set complement and intuitionistic sets

Before I introduce such structures in section 4, a comment should be made regarding Atanassov's
[1986, 1994; Atanassov and Gargov, 1989] intuitionistic fuzzy sets and interval valued intuitionistic fuzzy
sets. A fuzzy set is defined by a degree of membership in [0,1]. As it was noticed in the discussion of
uncertainty forms in section 3.2., fuzziness is identified with the conflict between inclusion and non-inclusion
in a set. If an element x of X  is included in set A to a degree d, then it is also not included in A to a (1-d)
degree; in other words, it is included in the complement of A, to a (1-d) degree. An intuitionistic A set is
instead defined by both the degree of membership and the degree of non-membership:

, with the restriction: . This idea ofA 
 �x,µA(x),�A(x)�: x�X, µA,�A: X�[0,1] µA(x) � �A(x) � 1
intuitionistic set introduces an asymmetry between inclusion and non-inclusion which may be very relevant
in the modeling of cognitive categories rich in all sorts of asymmetries. These sets have been successfully
extended into IVFS with a whole set of relevant operators, thus Gorza�czany and Türk·en's mechanisms
mentioned before could be endowed with this extra asymmetry. I do not pursue this avenue here, but it may
prove to be an extension well worth pursuing.
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Figure 2: Consonant Evidence Set with 3 focal
elements

4 Evidence Sets: Membership and Belief

An alternative way to represent an IVFS A is to consider that for every element x of X, there is a

body of evidence (55x, mx) defined on the set of all intervals of [0,1],  88[0, 1], with a single focal element given
by the interval . The basic probability assignment function mx assumes the valueI x


 [l x
inf , l

x
sup] I [0,1]

1 for this single focal element, representing our belief that the degree of membership of element x of X in
A is (with all certainty) in the sub-interval Ix of [0, 1]. In other words,  our judgement of the (nonspecific)
degree of membership, Ix, of x in set A indicates that we fully believe it is correct. Notice that the universal
set of the IVFS is X, but the universal set of the body of evidence is the unit interval[0, 1].

It is now clear that an IVFS is a very special case of a more general structure which I refer to as
evidence set. An evidence set A of X, is defined by a membership function of the form:

 A(x): X â 11[0, 1]

where,  11[0, 1] is the set of all possible bodies of evidence (55
x, mx) on  88[0, 1]. Such bodies of evidence are

defined by a basic probability assignment mx on 88([0, 1]), for every x in X (focal elements must be intervals).
Notice that [0, 1] is an infinite, uncountable, set, while X can be countable or uncountable. Thus, evidence
sets are set structures which provide interval degrees of membership, weighted by the probability constraint
of DST. They are defined by two complementary dimensions: membership and belief. The first represents
a fuzzy, nonspecific, degree of membership, and the second a subjective degree of belief on that membership,
which introduces conflict of evidence as several, subjectively defined, competing membership intervals
weighted by the basic probability constraint are created.

4.1 Consonant Evidence Sets

An interesting case occurs when  we re-

strict
�55

x  to consonant bodies of evidence, that is, to
a nested structure of interval focal elements:

. In this instance weI x
1 I I x

2 I à I I x
n I [0,1]

obtain a sort of graded and nested structure of sev-
eral IVFS (Figure 2), which leads to consonant
belief measures: . In-Bel(I x

1 )�Bel(I x
2 )�###�Bel(I x

n )�1
stead of using a single interval with maximum de-
gree of belief, to formalize the nonspecificity of
the degree of membership of element x of X in a
set  A, as is the case of IVFS, a consonant evidence
set uses several nested intervals  (three in the case
of Figure 2) with different degrees of belief, stating
our graded evidence claims regarding the member-
ship of element x of X in A. 
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Figure 3: Non-Consonant Evidence Set with 3 focal
elements

4.2 Non-Consonant Evidence Sets

When 55x is no longer restricted to
consonant bodies of evidence, we obtain evidence
sets that are a bit more “incoherent”, that is,
disjoint intervals of membership exist for the same
membership degree in the evidence set. In other
words, the evidence we possess leads to a
conflicting characterization of the membership
value of x. Figure 3 shows an example of a non-
consonant evidence set.

4.3 Complexity of Computation

Even though evidence sets are more complicated than standard fuzzy sets or IVFS, computationally
they are still easier structures than general type 2 fuzzy sets or probabilistic sets. As discussed in section 2.3
IVFS require only an upper a lower value for their interval of membership, which is simpler than defining
a probability or possibility distribution on membership degrees. Evidence sets are also interval-based set
structures, thus each membership degree needs only to be described by simple intervals and their respective
weight. If the number of intervals is kept fairly small, which is expected of human discriminative capacities,
the complexity of computation is kept very small. In chapter 5 a computer application using evidence sets
is proposed which faced no computational problems associated with the complexity of evidence sets. Indeed,
the objects used to implement evidence sets are rather trivial compared to the larger relational database
scheme in which they are imbedded.

4.4 Contextual Interpretation of Evidence Sets

"To speak of a prototype at all is simply a convenient grammatical fiction; what is really referred to are
judgements of degree of prototypicality." [Rosch, 1978, page 40 second italics added]

In the previous sections, the idea of categories as subjective creations of a cognitive agent doing
the categorizing was stressed. It was also discussed how a full representation of uncertainty forms, as well
as an adequate accounting of context are necessary attributes of good feasible models of categories. None
of the fuzzy set and IVFS approaches to this problem consider, explicitly, the notion of subjective context
dependencies. This is so because fuzzy sets do not offer an explicit account of belief in evidence; in other
words, we have degrees of prototypicality and not judgements of degrees of prototypicality as Eleanor Rosch
required in the previous quote. 

The interpretation I suggest for the multiple intervals of evidence sets, in light of the problem of
human categorization processes, considers each interval of membership I j

x, with its correspondent evidential
weight mx( I j

x), as the representation of the prototypicality of a particular element x of X , in category A
according to a particular perspective. In other words, each interval I j

x represents a particular perspective of
the element x of a category represented by an evidence set A. Thus, each element x of our evidence set A will
have its membership varying within several intervals representing different, possibly conflicting, perspec-



24This idea of interpreting bodies of evidence as perspectives, spins off from a generalization of Gordon
Pask's [1975, 1976] Conversation Theory which I have proposed with the construction of a data-retrieval system to
be discussed in chapter 5 [Medina-Martins and Rocha, 1992].

25That is, every element of the set is formally free to be ascribed any value in the unit interval,
independently of the values of other elements in the set.
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tives. An IVFS refers to the case where we have a single perspective on the category in question, even if it
admits a nonspecific representation (an interval)24. 

The ability to maintain several of these perspectives, which may conflict at times, in representations
of categories such as evidence sets, allows a model of cognitive categorization or knowledge representation
to directly access particular contexts affecting the definition of a particular category, essential for radial
categories. In other words, the several intervals of membership of evidence sets refer to different perspectives
which explicitly point to particular contexts. In so doing, evidence sets facilitate the inclusion of subjectivity
in models of cognitive categorization in addition to the inclusion of the several forms of uncertainty.

“Whenever I write in this essay ‘degree of support’ that given evidence provides for a proposition or the
‘degree of belief’ that an individual accords the proposition, I picture in my mind an act of judgement. I do
not pretend that there exists an objective relation between given evidence and a given proposition that
determines a precise numerical degree of support. Nor do I pretend that an actual human being’s state of
mind with respect to a proposition can ever be described by a precise real number called his degree of belief,
nor even that it can ever determine such a number. Rather, I merely suppose that an individual can make a
judgement. Having surveyed the sometimes vague and sometimes confused perception and understanding
that constitutes a given body of evidence, he can announce a number that represents the degree to which he
judges that evidence to support a given proposition and, hence, the degree of belief he wishes to accord the
proposition.” [Shafer, 1976, p. 21, italics added]

Shafer’s intent captured in the previous quotation seems to follow Rosch’s earlier quotation in the
context of cognitive categorization. The degrees of belief on which evidence theory is based do not aspire
to be objective claims about some real evidence, they are rather proposed as judgements, formalized in the
form of a degree. Likewise, Rosch’s prototypes are not assumed to be an objective grading of concepts in
a category, but rather judgements of some uncertain, highly context-dependent, grading. Evidence sets offer
a way to model these ideas since an independent25, unconstrained, membership grading of elements
(concepts) in a category is offered together with an explicit formalization of the belief posited on this
membership. In a sense, in evidence sets, membership in a category and judgments over membership are
different, complementary, qualities of the same phenomenon. None of the other structures so far presented
are able to offer both this independent characterization of membership and a formalization of judgments
imposed on this membership: traditional set structures (crisp, fuzzy, or interval-valued) alone offer only an
independent degree of membership, while evidence theory by itself offers primordially a formalization of
belief which constrains the elements of a universal set with a probability restriction. 

Regarding the previously discussed connectionist extraction of prototypes, notice that Evidence
Sets, as any set structure, have independent, unconstrained membership. Connectionist prototypes are
implicitly defined by a semantic metric constraining the elements of the categorizing universe. The existence
of such metrics may be very important for cognitive categorization. However, and as previously stressed,
Evidence Sets are merely proposed as models of cognitive categories, it is up to the model of cognitive
categorization to supply additional constraints such as semantic metrics. As a higher level structure, it is very
important that Evidence Sets do not have such constraints a priori, in fact, it is precisely their advantage over
connectionist devices which are not flexible enough to allow users to arbitrarily change constraints and
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NSp(m,µ) 
 M
AIX

m(A) #µ(A) (11)

contexts on prototype-based categories. Later in this chapter, approximate reasoning methods are proposed
which shall be used in Chapter 5 to define a database retrieval system that constrains Evidence Sets with
context-specific semantic metrics. 

5. Relative Uncertainty and Evidence Sets

The nonspecificity and conflict of the membership degrees of evidence sets are defined on the unit
interval which is uncountable. Thus, to measure the uncertainty content of evidence sets it is necessary to
define measures of uncertainty capable of dealing with uncountable domains. Traditionally, uncertainty is
measured in bits of information qualifying countable sets of alternatives.  In the following I take a new
approach to measure uncertainty-based information in uncountable domains.

5.1 Nonspecificity

5.1.1 A General Measure

Nonspecificity  is identified with unspecified distinctions between several alternatives, that is,
when several alternatives exist which are equally possible. It depends on the quantity of alternatives for the
value or outcome of a particular proposition, event, variable, etc. Thus, to measure this kind of uncertainty,
we need some measure of the “size” of the set of the several alternative values for a variable x. The “size”

of several alternatives can be defined by a nonnegative,  extended real valued set function on a )-algebra 44

of X:  µ: 44 â [0, �]. For intuitive reasons, it is desired that the “size” of a set of alternatives A, which
contains a set of alternatives B plus some other elements, be larger than the “size” of B. Thus, µ must be

monotone: A I B _ µ (A) �  µ (B), for all A, B � 44. We further want that µ(A) < � for some A  � 44, that is,

there will be at least one element of 44 whose “size” is not infinite so that µ possesses at least some minimal

discriminative power over 44. The set of all functions with the properties of µ is denoted by <<.
A monotone set function  µ will yield an intuitive measurement of the “size” of the several

alternatives in an uncertain situation. However, in the context of DST, uncertain situations are described by

bodies of evidence. Therefore, a measure of nonspecificity in DST should be a function NSp: 11�

�

× << â [0,
�) which takes into account the “size” of each focal element A, weighted by the respective probability
assignment value m(A):

Notice that since µ refers to set functions defined on a )-algebra of X and not on ??(X), the measures
of uncertainty discussed below are only defined for bodies of evidence whose focal elements are members
of a )-algebra where µ can be defined. For instance, if µ is the Lebesgue measure, focal elements will be
restricted to a maximal )-algebra of Lebesgue-measurable sets.



26 Inclusion in DST was discussed in section 2.2.6.
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µX×Y(R) 
 µX RX �µY RY (12a)

µX×Y(R) � µX RX �µY RY (12b)

µX×Y(R) � µX RX �µY RY (12c)

Definition 1. Let f be a function defined on bodies of evidence of X,  f: 11 â [0, �). f is monotone

iff  f (m1) �  f (m2), whenever (551, m1) I (552, m2).  (551, m1) and (552, m2) represent bodies of evidence defined
on X 26.

Proposition 1. Function NSp is monotone as a function on 11.
Proof: Dubois and Prade [1987] have shown that for any positive set-function � such that if

A I B _ �(A) � �(B), then

(551, m1) I (552, m2) < M
AIX

m1(A) #�(A) � M
AIX

m2(A) #�(A)

Since µ in (11) is a monotone positive set function, the above implication holds. If we substitute
� for µ it follows that:

(551, m1) I (552, m2) _ NSp(m1, µ) � NSp(m2, µ)
*

5.1.2 Absolute Nonspecificity

Monotonicity alone is clearly not enough for what we desire of measures of nonspecificity.
Traditionally, measures of uncertainty observe other properties such as additivity and subadditivity.

Definition 2. Let f be a function defined on the set of all bodies of evidence,  f: 11 â [0, �). Let

m be an arbitrary joint basic probability assignment defined on ?? (X × Y), and mX,  mY be the associated
marginal basic probability assignments.  f is subadditive iff  f (m) �  f (mX) + f (mY).

Definition 3. Given the same conditions as in definition 2, except that m is now based on
noninteractive bodies of evidence.  f is additive iff  f (m) =  f (mX) + f (mY).

Proposition 2. NSp(m, µX×Y) as defined in (11), is additive if and only if there exist monotone

functions  µX, and  µY  � <<, defined on the sets X, and Y, which satisfy:

when R = RX × RY (noninteractive bodies of evidence), where RX and RY are the projections of R on X and Y
respectively as defined in section 2.2.4, and we have either:

or

for all cases (R I RX × RY).

Proof: Additivity is defined for noninteractive bodies of evidence. Utilizing (8), (12a), and (3) we
reach:
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NSp(m,µX×Y) 
 M
RIX×Y

m(R) #µX×Y(R) 



 M
AIX
A
RX

M
BIY
B
RY

mX(A) #mY(B) # µX(A)�µY(B) 



 M
AIX
M
BIY

mX(A) #mY(B) #µX(A) � M
AIX
M
BIY

mX(A) #mY(B) #µY(B) 



 M
AIX

mX(A) #µX(A) #M
BIY

mY(B) � M
BIY

mY(B) #µY(B) #M
AIX

mX(A) 



 NSp(mX,µX)�NSp(mY,µY)

NSp(mX,µX) 
 M
RIX×Y

m(R) #µX(RX)

NSp(mX,µX) 
 M
AIX

mX(A) #µX(A) 
 M
AIX

M
R
A
RX

m(R) #µX(A)


 M
AIX
M

R
A
RX

m(R) #µX(RX) 
 M
RIX×Y

m(R) #µX(RX)

NSp(mX,µX) � NSp(mY,µY) 
 M
RIX×Y

m(R) # µX(RX) � µY(RY)

� M
RIX×Y

m(R) #µX×Y(R) 
 NSp(m,µX×Y)

The reverse implication is true if (12b) or (12c) is also satisfied. If we multiply NSp(mX, µX) and
NSp(mY, µY) by the unitary quantities given by (3) defined on sets Y and X respectively, and arrange the terms
in the same manner above, we conclude that µX(A) + µY(B) must equal µX × Y (A × B) ,if we are to recover
NSp(m, µX ×Y), only if (12b) or (12c), since M

i
ai bi
M

i
ai ci < bi
ci , iff ~i either bi	ci�0 or bi	ci�0

*

Lemma 1. Let RX (RY) represent the projection of the elements R of Z=X × Y on X (Y ). mX (mY) is
the marginal basic probability assignments defined on X (Y). m is the joint basic probability assignment on
Z.  Then the following equations holds:

Proof:

�

Proposition 3. If NSp(m, µX×Y) is additive for noninteractive bodies of evidence, then if (12b) is
satisfied it is subadditive for interactive ones.

Proof: If NSp is additive then there exist monotone functions  µX, and  µY  � << defined on X and
Y, respectively, which satisfy (12). Therefore, using lemma 1 and (12b) for the projections of R on X and Y:

*

When X is countable, a possible set function µX is the Hartley[1928] measure:



27 Note that the bodies of evidence considered here, and throughout the paper, have a finite
number of focal elements (see section 2.2.3).

28 Since we desire positive measures of information.
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µX(A) 
 log2
A
, ~AIX (13)

NSp(m,µX) 
 N(m) 
 M
AIX

m(A) # log2
A
 (14)

µY(B) 
 ln(B), wheneverB makes sense (15)

NSp(m,µY) 
 N(m) 
 M
B�Ø

m(B) # ln(B) (16)

where 
A
 denotes the cardinality of set A, which yields an intuitive value of zero for no uncertainty (unitary
cardinality).  Substituting (13) into NSp (11), we obtain the familiar measure of nonspecificity, N,  that
Dubois and Prade [1985] generalized from Higashi and Klir’s [1983] U-uncertainty:

which attains the value 0 for full certainty, and log2
X
 for total ignorance. As a special case of NSp (11),
and since µX satisfies (12a) and (12b), N is monotone, additive, and subadditive. In addition, Ramer[1987]
showed that N expressed in (14) is unique under a set of desirable axioms which include the three axioms
above, plus others such as symmetry, branching, and normalization (based on choosing bits as measurement
units) [see also Klir, 1993 for more details]. 

All of these characteristics made this measure of nonspecificity the obvious choice for measuring
nonspecificity in countable domains. However, its extension to uncountable, domains introduces a few
problems that I shall investigate next. Before that though, notice that µX given by (13) is not defined for the
empty set, since 
L
=0. This is a technicality that can be avoided by rewriting (14) as a sum for all AI 55

[Klir, 1993], where 55 is the set of focal elements, which does not include the empty set by definition.
If the domain of µ , Y, is uncountable27,  µY given by (13) clearly yields undesirable values. Only

discrete, finite subsets B of Y will have µY(B) < �, since the cardinality of all other subsets of Y will be
infinite. Therefore, all bodies of evidence defined on infinite, uncountable, domains whose focal elements
are not finite, will have infinite nonspecificity as defined by (14). To improve this situation, a natural
extension of (13) can be found by replacing cardinalities by lengths, or better, by a Lebesgue measure �(B)
of the subsets B of Y. In general we can use the symbol  (length of B) to denote the Lebesgue measure ofB
B. The new µY comes:

The natural logarithm is used instead of the logarithm of base 2, since the choice of the logarithm
of base 2 in (13) is motivated solely by the desire to employ bits as measurement units. In uncountable
domains, the notion of bit is meaningless since we have an infinite universe of alternatives. Substituting (15)
into NSp (11) we obtain:

This measure of nonspecificity can also be seen to follow from Ramer’s [1990] work on measuring
information in infinite domains. Since µY given by (15) satisfies (12) (with important limitations  to be
discussed below), we can say that N as defined in (16) is monotone, additive, and subadditive whenever µY

is defined and satisfies (12). Now, µY in (15) must be a positive set function as previously required28, thus
it is only defined for subsets B of Y with Lebesgue measure �(B) � 1. This can be avoided by defining it



29 µ(A) � µ(B) when A I B.
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instead as: . However, clearly, this alternative definition does not satisfy (12a); therefore,µY(B) 
 ln(1�B)
it would lead to a definition of nonspecificity without the desired axiomatic requirements.

Notice that if Y is the unit interval, an important domain for interval computation, we can redefine
µ as: , a positive set function, though inversely monotonic29 , which satisfies (12a) andµ�

Y(B) 
 	 ln(B)
(12c). Substituting this expression into the general NSp (11) we obtain the inverse of N in (16): N* = -N,
which is  additive and subadditive for any focal element with positive Lebesgue measure. Because of its
inverse monotonicity, it intuitively measures the inverse of nonspecificity: specificity. Turksen [1994] has
proposed the inverse of specificity as a measure of nonspecificity for interval valued fuzzy sets, however,
since does not satisfy (12a), such a measure of nonspecificity is not additive.µY(B) 
 	1/ln(B)

The measure of specificity for the unit interval N*, is clearly more effective than N in (16) itself,
since the latter is restricted to bodies of evidence with focal elements with Lebesgue measure greater or equal
than one. Further, bounded uncountable, set can always be mapped into the unit interval, which makes N*

applicable to any infinite, uncountable domain Y. However,   is not defined for countable subsets of Y,µ�

Y
since the Lebesgue measure of subsets B of Y with countably many elements is null. Thus, specificity is only
defined for subsets of Y with uncountably many elements. This leaves out any body of evidence containing
a countable collection of singletons as a focal element, that is, any zero Lebesgue set. For instance, full
certainty cannot be measured since it is defined by a body of evidence with a singleton as the only focal
element.

Another point worth mentioning regarding this formulation of measures of nonspecificity has to
do with the utilization of the set function µ in different domains. Notice that in (12), µ must be defined
differently for X × Y, X, and Y: the relevant universal sets necessary to define additivity and subadditivity.
A function is a procedure to calculate a relation between two sets: a domain and a range. If the domain
changes, so does the definition of the function. When we use the same function on different domains, it
means that there exists a larger set U, containing all the different domains, where the function is actually
defined. For instance, we use the same expression (14) to measure the nonspecificity N of bodies of evidence
defined on countable sets  X × Y, X, and Y based on the same function µ given by (13). In other words, we
can calculate cardinalities in all those sets because they are countable. Cardinality is a measure that is defined
for the set of all countable sets, therefore we can use the same procedure as we move from countable domain
to countable domain.

In uncountable domains the situation changes since the Lebesgue measure on X × Y is different
from the Lebesgue measure on X or Y. Basically, it is an area for the first case, and a length for the second.
The Lebesgue measure is defined in  Ü

n as a general procedure. This allows us to move from one uncountable
domain to another and still be able to calculate the Lebesgue measure. However, we should be aware that
unlike cardinality, the Lebesgue measure is calculated in a different way as we move from sets to the cross
products of sets. 

This caution becomes more relevant if we wish to measure the uncertainty of a body of evidence
defined on X × Y, when X is countable, and Y is uncountable: hybrid domains. The nonspecificity measures
N given by (14) or (16) (as well as the related specificity N*) cannot deal with such a case because they are
committed to the cardinality or the Lebesgue measure of a set, respectively, for any domain they are applied
to. However, the general measure of nonspecificity NSp (11) works for such a hybrid case. Furthermore,
provided we define µX×Y using (12), where µX and µY are given, for instance, by (13) and (15) respectively,
NSp will be additive and subadditive (propositions 2 and 3).  Of course (15) carries the limitations discussed
above for uncountable domains yet to be improved if we are to treat the information content of uncountable
and hybrid domains effectively.
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µX×Y(R) 
 µX(RX) #µY(RY) (17a)

µX×Y(R) � µX RX #µY RY (17b)

The reason why I refer to N in (13) and (16) as a measure of absolute nonspecificity, will become
clearer in the next section with the introduction of relative nonspecificity. Basically, N measures the
nonspecificity of bodies of evidence regardless of the amount of maximum uncertainty-based information
present in their universal sets. A body of evidence will carry the same amount of nonspecificity whether it
is defined on X, or on some set U J X. In countable domains N’s (14) unit is the bit (1 bit equals the
uncertainty of 2 alternatives), while in uncountable domains N’s (16) unit is associated with the natural
number e: when the Lebesgue measure of the set of alternatives equals e, nonspecificity is unitary.

Let me now summarize the problems facing N defined by (14) and (16):

a. (14) is only defined for bodies of evidence with countable, non-empty, focal elements defined
on some universal set X.

b. (16) is only defined for bodies of evidence with focal elements whose Lebesgue measure is
greater than or equal to one, while the related specificity is defined only for focal elements
with positive Lebesgue measure. This excludes singletons as focal elements.

c. Neither (14) nor (16) alone can deal with hybrid domains defined as cross-products of
countable and uncountable sets. 

d. The general measure (11), with µ satisfying by (12) can deal with hybrid domains and it is
monotone, additive, and subadditive. Nonetheless, if µ is based upon (13) and (15), NSp will
be restricted in the same manner as (14) or (16).

Notice that the above discussion does not include a very recent development in the measurement
of nonspecificity in nondiscrte domains. Klir and Yuan [1995] have proposed a Hartley-like function more
complex than (15) with much better axiomatic properties than (16) and which solves the problems in b and
c above. A more complete study of this new function in the framework here proposed is left for future
research. In any case, one of the reasons to develop the measures of relative nonspecificity to be presented
in the next section is the establishment of more computationally friendly measurements of nonspecificity,
which are simpler than the new Hartley-like function.

5.1.2 Relative Nonspecificity

The measures of nonspecificity obtained so far from the general NSp defined by (11), are based on
a generic monotone set function µ. I will now restrict µ by making it a classic measure with properties (1)
and (2) defined in section 2.1.  Further, instead of (12) used in 5.1.1 for the measures of absolute
nonspecificity, let it satisfy the following restriction for domains defined by the Cartesian product of two sets
X and Y:

when R = RX × RY (noninteractive bodies of evidence), where RX and RY are the projections of R on X and Y
respectively as defined in section 2.2.5, and we have:

for all cases (R I RX × RY). If X is countable µX(A) can be the cardinality of set A:   µX(A) = 
A
. If Y is
uncountable, µY(B) can be the length (Lebesgue measure) of set B:   µY(B)  = .B
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NSp(m,µX×Y) 
 NSp(mX,µX) #NSp(mY,µY) (18)

NSp(m,µX×Y) 
 M
A×BIX×Y

m(A×B) #µX×Y(A×B) 



 M
A×BIX×Y

mX(A) #mY(B) #µX(A) #µY(B) 



 M
AIX

mX(A) #µX(A) # M
BIY

mY(B) #µY(B) 



 NSp(mX,µX) #NSp(mY,µY)

NSp(mX,µX) � NSp(mY,µY) 
 M
RIX×Y

m(R) # µX(RX) � µY(RY)

� M
RIX×Y

m(R) #µX(RX)#µY(RY)

M
RIX×Y

m(R) #µX(RX) #µY(RY) � M
RIX×Y

m(R) #µX×Y(R) 
 NSp(m,µ)

Proposition 4. If µ in NSp(m, µ) given by (11) follows (17), then NSp satisfies the following

multiplicative property for noninteractive bodies of evidence  (5X, mX) and (5Y, mY) :

Proof.

Utilizing (8) and (17a).
*

NSp with µ following (17) is thus monotone and observes multiplicative behavior for noninteractive
bodies of evidence. In countable domains, with µ(A) = 
A
, it varies between 1 for full certainty, and 
X
 for
total ignorance. In uncountable domains, with  µ(A)  = , NSp varies between 0 for full certainty, and  forA X
total ignorance. However, even though it has a few intuitive properties which allow us to measure
nonspecificity fairly well, it lacks some other desirable axiomatic properties. To improve these, I will impose
another restriction on µ with implications for the modeling of nonspecificity discussed ahead.

Definition 4. Let µ be a classical measure on ?? (X) taking values on the unit interval: µ: ?? (X) â
[0, 1].

In other words, µ, as a measure, follows (1) and (2), is further restricted by (17), and it yields
values � 1. 

Proposition 5. NSp(m, µ) given by (11), with µ following definition 4, and restricted by (17), is
subadditive.

Proof: Functions µX × Y, µX, and  µY defined on X × Y, X, and Y respectively satisfy (17). Using
lemma 1,

Since the sum of two numbers in the unit interval is always larger or equal than their product, then:
µX(RX) + µY(RY) � µX(X) ·  µY(RY). Therefore, using (17b):



30 Nonspecificity measure (20) is in some ways similar to Yager’s [1982, 1983] specificity. However,
Yager’s measure deals with the intuitive inverse of nonspecificity, but in absolute terms. Even though it is restricted
to the unit interval, the specificity content of a body of evidence is independent on the size of its universal set.
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µX(A) 
 
A


X


, ~AIX (19)

NSp(mX,µX) 
 IN(mX) 
 1


X

M
AIX

mX(A) # 
A
 (20)

µY(B) 
 B

Y
, ~BIY (21)

NSp(mY,µY) 
 IN(mY) 

1

Y
M
BIY

mY(B) #B (22)

thus NSp(mX) + NSp(mY) � NSp(m).
*

Thus, NSp given by (11), with µ following definition 4, and restricted by (17) is monotone,
subadditive, and observes a multiplicative property for noninteractive bodies of evidence.

When X is countable, an obvious choice for the measure µX is the cardinality of a set divided by
the cardinality of the universal set:

Substituting (19) into NSp (11) we obtain a measure of nonspecificity IN given by:

The maximum value it attains for total ignorance is 1, and the minimum for full certainty is 0. It
is defined for all subsets of X, including the empty set. It is clearly symmetrical in the sense that bodies of
evidence with the same distribution of evidential weights, applied to focal elements of equal cardinality, will
yield the same value of nonspecificity. It is monotone, subadditive, and multiplicative for noninteractive

bodies of evidence, for all A � ?? (X) (propositions 1, 5, and 4 respectively). It is a ratio, thus it is unitless30.
When Y is uncountable, the measure µ can be the Lebesgue measure, or length in the case of a one

dimensional domain, of a set divided by the Lebesgue measure of the universal set:

which can only be applied to universal sets Y with finite Lebesgue measure greater than zero. Substituting
(21) into NSp (11) we obtain a measure of nonspecificity for uncountable, domains:

The maximum value it attains for total ignorance is 1, and the minimum for full certainty is 0. It
is defined for all subsets B of Y, including zero Lebesgue sets, and the empty set. It is also symmetrical,
though in this case symmetry has to be defined in terms of the Lebesgue measure not cardinality. It is

monotone, subadditive, and multiplicative for noninteractive bodies of evidence, for all B � ?? (Y). It is
unitless.

IN given by (20) and (22) cannot deal with hybrid domains because they are committed to specific
measures µX (19) and  µY (21) respectively. However, the general expression NSp (11) can measure domains
defined as the cross-product of countable and uncountable sets, provided we use restriction (17) to define
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the joint measure µX×Y, and, for instance, define µX with (19), and µY with (21), all following definition 4.
Such a measure is monotone, multiplicative, subadditive, and symmetrical.

The measure of nonspecificity IN(m) for countable and uncountable domains, given by (20) and
(22) respectively, can be seen as an index of nonspecificity. It accounts nonspecificity by relating it to the
maximum information present in the universal set (measured by the respective µ): relative nonspecificity.
This is in many ways a more intuitive way to measure nonspecificity than utilizing absolute measures such
as N (14) and (16). When we measure the nonspecificity of a body of evidence in absolute terms, say in bits
as yielded by (14), we know how many options we have: 1 bit, 2 options. Nonetheless, 2 options out of 10
possible options do not quite mean the same thing as 2 options out of 100. The first case clearly represents
a more (relative) uncertain situation. Measures such as IN offer this kind of relative to the universal set
measurement of nonspecificity, which might be more intuitive in practical situations such as reliable
computation [Rocha et al, 1996]. Further, IN (22) is clearly much more effective than N (16) in measuring
nonspecificity in infinite, uncountable, domains. It is defined for any kind of focal element on infinite,
uncountable, domains, including zero Lebesgue sets; (16) cannot treat those. Also, even in countable

domains, (20) is defined on ?? (X), the provision to exclude the empty set is not necessary.  Within this
framework, the general measure NSp (11) can be used to deal with hybrid domains effectively as discussed
above. Relative nonspecificity, with its unitless measures, offers intuitively a more coherent framework to
measure uncertainty in countable and uncountable domains.

5.2 Conflict

Conflict is identified with disagreement between several alternatives. The word disagreement
implies the existence of some distinctive criteria between the several alternatives. When it is possible to
distinguish between the several alternatives for some event, proposition, or variable values, we have conflict
amongst alternatives. It depends on the strength of the several alternatives, not on the "size" of the sets of
distinguishable alternatives. Conflict increases when the quantity of equally strong contending alternatives
increases, and decreases otherwise.

5.2.1 Absolute Conflict

In probability theory, conflict is measured with the Shannon measure of entropy:
. In evidence theory, the probabilistic entropy is efficiently extended, onH(m) 
 	 M m({ x})log2m({ x})

countable domains,  to the measure of uncertainty S(m) named Strife given by equation (9) in section 2.4.1.
It measures the mean conflict among evidential claims within each given body of evidence in bits. It is
additive, and it becomes the Shannon entropy for probability measures [Klir, 1993]. Its range is [0, log2 n],

where n is the number of focal elements: n = 
55
. S(m) =  0 when m({ x}) = 1 for some x of X , and

S(m) = log2 n when m(A) = 1/n for all A � �
�

55, provided all focal elements A are disjoint. Thus, strife increases
as alternatives start losing their distinctive strength and are qualified by a similar belief weight m.

The term 
A � B
/
A
 in (9) above, even though utilizing the cardinality measure, is simply
expressing the degree of subsethood of set A in set B [Klir, 1993]. Conflict in evidence theory does not
depend on the “size” of the several focal elements A � 55, but on their strength, given by the basic probability

assignment m, and on the degree of subsethood in one another. Therefore, since 55 is finite by definition
(section 2.2.3), as long as a suitable degree of subsethood is defined, the measure of strife given by (9)
remains an adequate measure of conflict (in bits and with the same characteristics above), both for countable
and for uncountable domains:
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S(m) 
 	M
A�Ø

m(A) log2M
B�Ø

m(B) #SUB(A,B) (23)

SUB(A,B) 


1, if AIB

�(ABB)
�(A)

, if �(A)>0

0, otherwise

(24)

IS(m) 
 S(m)
log2n

(25)

IS(m) 
 w1# IS(mX) � w2# IS(mY), with w1�w2 
 1 (26)

where SUB(A, B) denotes the subsethood of set A in set B of X. In countable domains its value is given by
the ratio 
A � B
/
A
. In uncountable domains it is given by:

where �(A) represents the Lebesgue measure of set A. The measure of discord as discussed in section 2.4,
can in the same way be easily extended to nondiscrete domains.

5.2.2 Relative Conflict

Strife given by (23) measures conflict in uncertain situations, described in DST, in absolute terms.
That is, it is a measure of the mean conflict among evidential claims within each given body of evidence.
As with the case of nonspecificity, we may be interested in a relative measure of conflict, relating the amount
of conflict present on a specific situation to the maximum conflict present in a given body of evidence with
n focal elements:

IS is an index of conflict yielding a value in the unit interval. It attains the value 1 for maximum
conflict, and 0 for no uncertainty. IS is not additive quite in the same sens

e as S, but it obeys the following proposition:
Proposition 6. IS(m) given by (25) satisfies the following property for noninteractive bodies of

evidence (55X, mX) and (55Y, mY):

where, m is the basic probability assignment of a body of evidence defined on Z = X × Y, and
w1 = lognX/(lognX + lognY), and w2 = lognY/(lognX + lognY); nX and nY denote  the number of focal elements

in 55X and 55Y respectively. 
The proof is quite trivial and follows from the fact that S is additive for noninteractive bodies of

evidence. 
Proposition 6 indicates that the index of conflict for a joint body of evidence defined on the

Cartesian product of two sets, is a weighted sum of the indices of conflict of each marginal body of evidence.
The weights are a measure of the relative size of the marginal bodies of evidence, that is, the number of focal
elements of each marginal body of evidence. The weighting is necessary to maintain the notion of index of
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A(x) 
 I x
1 ,m x

1 , I x
2 ,m x

2 , ### , I x
n ,m x

n (27)

A c(x) 
 I1
x c,m x

1 , I x
2

c
,m x

2 , ### , I x
n

c
,m x

n (28)

D I x, I x c

 � �l x

sup 	 l x
sup

c

 � �l x

sup 	 (1	 l x
inf) 
 � �l x

sup � l x
inf 	 1 (29)

conflict. For interactive bodies of evidence, the equality in (26) is substituted by an inequality "�", which
defines a kind of weighted subadditivity.

5.3 Fuzziness

The amount of fuzziness present in a fuzzy set was defined in section 2.4.3 as the lack of distinction
between the set and its complement, and given by equation (11). It is fairly easy to extend the usual fuzzy
set operations of complement, intersection, and union to an IVFS framework [e.g. Gorza�czany, 1987] or,
more generally, to an evidence set framework. Section 6 is precisely devoted to the definition of such an
extended theory of approximate reasoning [an equivalent formulation has also been proposed by Zhu and
Lee, 1995]. 

The interval valued membership function of elements of X in an IVFS A is given by: 
A(x) =  . Its complement can be defined as the negation of the interval limits in reverseI x


 [l x
inf , l

x
sup] I [0,1]

order: . The membership function of an evidence set A of X is given, for eachA c(x) 
 ( I x)c

 [1	l x

sup,1	l x
inf ]

x, by n intervals weighted by a basic probability assignment mx:

The complement of an evidence set, or the negation operator in interval valued evidential logic
systems [Zhu and Lee, 1995], is defined as the complement of each of its interval focal elements with the
preservation of their respective evidential strengths:

Since the complementation of a set does not affect the Lebesgue measure  of the interval focal
elements, nor their evidential weight, the distinction, D, between an interval Ix and its complement (Ix)c,  is
defined as the absolute of the difference between their respective higher bounds:

Notice that all intervals symmetric to the middle point (½) of the membership space Y = [0, 1], will
be indistinguishable from their complement (D = 0) since the sum of their limits is 1. 

The fuzziness of the membership of an element x of X in an evidence set A, is obtained by
weighting the quantity D for each focal element with mx, and subtracting it from 1 to obtain the lack of
distinction between its membership in the set and in its complement (such quantity is an index of local
fuzziness):

IF x(A(x)) 
 1 	 M
n

k
1
m x I x

k #D I x
k , I x

k
c

(30)

The absolute measure of fuzziness for the whole evidence set A is:
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IN x(A(x)) 
 M
I x
I[0,1]

m x(I x) # I x
(33)

F(A) 
 M
x�X

IF x A(x) (31)

whose range is [0, 
X
]. An index of total relative fuzziness can be obtained by:

IF(A) 
 F(A)

X


(32)

Notice that if X is uncountable, (31) and (32) can de adapted so that the sum becomes an integral,
and the cardinality of X becomes the Lebesgue measure of X.

5.4 3-D Uncertainty

A fuzzy set captures fuzziness in a specific way; an IVFS introduces nonspecificity; a consonant
evidence set introduces grades or shades of nonspecificity; and finally, a nonconsonant evidence set intro-
duces conflict  as we have cases where the degree to which an element is a member of a set is represented
by disjoint sub-intervals of [0, 1] with different evidential strengths. The three forms of uncertainty are
clearly present in human cognitive processes. As exposed above, fuzzy sets and interval valued fuzzy sets
offer only a limited representation of recognized uncertainty forms, while evidence sets capture all of those.
Thus, more than simply measuring fuzziness, as approximate reasoning models do, models of uncertain
reasoning based on evidence sets need to effectively measure all the three uncertainty forms.  Hence, we need
a 3-tuple of measures of the 3 main kinds of uncertainty to aid us in the decision making steps of our
uncertain reasoning models. Each situation, each set, should be qualified in its uncertainty content with
something like: (Fuzziness, Nonspecificity, Conflict).

F and IF, equations (31) and (32), presented in section 5.3 define, respectively, measures of
absolute and relative fuzziness for evidence sets. Given the results of sections 5.1 and 5.2, we can now define
similar measures for nonspecificity and conflict.

5.4.1 Nonspecificity in Evidence Sets

In addition to fuzziness, the membership of an element x of X in an evidence set A possesses
nonspecificity that can be measured by IN (22) derived in section 5.1.2 for uncountable domains such as
Y=[0, 1]. This measure defines an index of local relative nonspecificity IN x (  = 1):Y

An absolute measure of nonspecificity for the whole evidence set A is:

N(A) 
 M
x�X

IN x A(x) (34)

whose range is [0, 
X
]. An index of total relative nonspecificity can be obtained by:
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IS x(A(x)) 
 S m x

log2n
(36)

Figure 4: 3-D Uncertainty Cube

IN(A) 
 N(A)

X


(35)

Again, if X is uncountable, (34) and (35) can de adapted so that the sum becomes an integral, and
the cardinality of X becomes the Lebesgue measure of X.

5.4.2 Conflict in Evidence Sets

In addition to fuzziness and nonspecificity, the membership of an element x of X in an evidence
set A possesses conflict that can be measured by IS (25) derived in section 5.2. This measure defines an index
of local relative conflict:

where S(mx) is the measure of strife (23) derived in 5.2, now defined on a body of evidence (55
x, mx) on

Y=[0, 1], where 55x is the set of focal elements Ix, and n is the number of such focal elements. An absolute
measure of conflict for the whole evidence set A is:

S(A) 
 M
x�X

IS x A(x) (37)

whose range is [0, 
X
]. An index of total relative conflict can be obtained by:

IS(A) 
 S(A)

X


(38)

Once more, if X is uncountable, (37) and (38)
can de adapted so that the sum becomes an integral,
and the cardinality of X becomes the Lebesgue measure
of X.

5.4.3 3-D Uncertainty Cube

The three forms of uncertainty define a 3
dimensional uncertainty space for set structures, where
crisp sets occupy the origin, fuzzy sets the fuzziness
axis, IVFS the fuzziness-nonspecificity plane, and
evidence sets most of the rest of this space.
Probabilistic sets occupy the conflict-fuzziness plane.

Notice that evidence sets cannot occupy the conflict-nonspecificity plane, that is, if nonspecificity and
conflict exist in evidence sets, then so will fuzziness. If the measures of uncertainty used are the indices so
far presented, the uncertainty content of evidence sets can be described in a unit cube space (figure 4). We
can calculate the uncertainty of each element x of X  of an evidence set A (local uncertainties), and plot each
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U x(A(x) ) 
 IF x(A(x)),IN x(A(x)),IS x(A(x)) (39)

U(A) 
 IF(A),IN(A),IS(A) (40)

U

IF IN IS

Crisp Sets 0 0 0

Fuzzy Sets [0,1] 0 0

IVFS [0,1] [0,1] 0

Evidence Sets [0,1] [0,1] [0,1]

       Uncertainty situation of different set structures 

element in this cube, in which case the uncertainty of an evidence set will be described by a "cloud” of
points in the uncertainty cube. The local uncertainty, U x,  will be defined by the following (fuzziness,
nonspecificity, conflict) 3-tuple based on equations (30), (33), and (36) respectively: 

Alternatively, we may calculate the total uncertainty indices for the set A, and plot it in this cube
as a single point. Naturally, this point will be the center of mass of the cloud of local uncertainties. The total
uncertainty, U,  of an evidence set A will be defined by: 

The uncertainty situation of the several set structures known is summarized in the following table:

6. Belief-Constrained Approximate Reasoning

6.1. Uncertainty Increasing Operations Between Evidence Sets

Recently, Zhu and Lee [1995] have proposed a belief based multi valued logic which defines a
connection between evidence theory and multi valued logics in much of the same way as evidence sets do,
that is, with the establishment of degrees of  belief on truth values given by intervals of the unit interval.
While evidence sets were defined in the context of set theory, Zhu and Lee thought of this extension in terms
of multi valued logics. This way, in the former we speak of belief based, interval valued membership in a
set, while in the latter we speak of belief based, interval valued truth value of a proposition.  Most of the
operators discussed in this section are equivalent to Zhu and Lee's formulation, though their interpretation
might differ. 

The operations of complementation, intersection, and union are the most basic connectives in a
theory of approximate reasoning. here I discuss only these operators, since all other connectives can be easily
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A(x) 
 I x
i ,m x

A ( I i ) , i 
 1, ... ,n (41)

B(x) 
 J x
j ,m x

B (Jj ) , j 
 1, ... ,m (42)

constructed from these. Naturally, complementation, intersection, and union as defined below for evidence
sets, subsume as special cases, the same operations for IVFS and fuzzy sets.

6.1.1 Complementation

The complement of an evidence was already defined in section 5.3 with equation (28).

6.1.2 Intersection

The intersection of two IVFS [Gorza�czany, 1987] is defined as the minimum of their respective
lower and upper bounds of  their membership  intervals. Given two intervals of [0, 1]  I 
 [IL ,IU] I [0,1]
and , the minimum of both intervals is an interval .J 
 [JL ,JU] K 
 MIN( I,J) 
 [MIN( IL,JL) ,MIN( IU,JU) ]
Given two evidence sets A and B defined for each x of X by:

and

where Ii and Jj are intervals of [0,1]. Their intersection is an evidence set C(x) = A(x) � B(x), whose intervals
of membership Kk and respective basic probability assignment mC(Kk) are defined by:
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C(K x
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MIN(I x

i ,J x
j )
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k

m x
A ( I x

i ) # m x
B (J x

j ) (43)

6.1.3 Union

The union of two IVFS [Gorza�czany, 1987] is defined as the maximum of their respective lower
and upper bounds of  their membership  intervals. Given two intervals of [0, 1]   andI 
 [IL ,IU] I [0,1]

, the maximum of both intervals is an interval .J 
 [JL ,JU] K 
 MAX( I,J) 
 [MAX( IL,JL) ,MAX( IU,JU) ]
Given two evidence sets A and B defined by (41) and (42), their union is an evidence set C(x) = A(x) F B(x),
whose intervals of membership Kk and respective basic probability assignment mC(Kk) are defined by:
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B (J x

j ) (44)

6.1.4 Increasing Uncertainty

By utilizing the connectives (43) and (44), the uncertainty of our models tends to increase, as two
bodies of evidence on the unit interval are combined into a new one, by preserving most perspectives
(contexts) involved. There will be at least as many intervals in the combined set as the minimum of intervals
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in the combining sets. In other words, if 
ix
 and 
jx
 represent the number of intervals (perspectives) present,
respectively, in combining sets A and B for element x, then the combined set C will have at least
MIN(
ix
,
jx
) intervals for concept x. An alternative to this way of combining evidence sets is described
below.

6.2 Uncertainty Decreasing Operation Between Evidence Sets

We can combine evidence sets by preserving all their perspectives (though with reduced weights
as the joined basic assignment must still add up to 1) as above, thus increasing the uncertainty complexity,
or we can combine them only according to the coherent perspectives (those aiming at the same intervals) by
utilizing Dempster's rule of combination (7) presented in section 2.24 , and decrease the uncertainty
complexity. Given two evidence sets A and B defined by (41) and (24), their uncertainty decreasing
combination is an evidence set C(x) = A(x) T B(x), whose intervals of membership Kk and respective basic
probability assignment mC(Kk) are defined by: 
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(45)

This operation eliminates all focal elements which do not coincide (or intersect) in both bodies of
evidence being combined, while the operations of section 6.1 maintain some evidential weight for these,
though enhancing those that do intersect.

Dempster’s rule of combination is used to combine different bodies of evidence over the same
frame of discernment. It is an all or nothing rule, that is, if the focal elements of two distinct bodies of
evidence being combined are disjoint, no combination is possible. In this situation, in DST, if we still
consider that there is relevant interaction between the two bodies of evidence which our frame of
discernment cannot capture, then we either rethink our basic probability assignments or the frame of
discernment is changed by introducing new primitives common to both bodies of evidence. Now consider
that our model of categorization, by utilizing Dempster’s rule,  reaches a combination of categories whose
bodies of evidence are completely incoherent. That is, no new category is obtainable. If this result is reached
in some intermediate step of an approximate reasoning process, the process is naturally stopped. To be able
to continue with this process, we have to obtain some transitional category. Since the frame of discernment
of the belief attributes of an evidence set is the unit interval, we cannot aim to refine it in any way. For this
reason, I have proposed uncertainty decreasing and increasing operations for evidence sets. If the evidence
sets being combined are at least partially coherent, we can use Dempster’s rule which will reduce the
uncertainty present. If this coherency is not attainable, we can choose an uncertainty increasing operation
which largely maintains the evidence from both structures being combined, until a more coherent state of
evidence is encountered at a later stage.

The uncertainty decreasing operation can be used when we have coherent evidence of membership
in combining evidence sets, and when we wish to reduce dramatically the amount of uncertainty present in
some simulation of human reasoning processes. In an artificial system, this operation might be identified we
fast decision-making processes. Say, if  we possess two categories which must be combined in order to make
a fast decision, then uncertainty must be reduced and the most coherent result chosen. On the other hand, if
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Uw � Yeager’s Union
� min w 1, (aw + bw)1/w ~

Figure 5: Fuzzy Set model of Pet-Fish. No single connective will yield a satisfying result for
the whole category.

we do not have coherent membership evidence, or if we do not need to engage in fast decision making, but
instead desire to search for more conflictuous, far-fetched, associations (from wildly different contexts), then
the uncertainty increasing operations should be chosen.

6.3 The Pet-Fish Example

One of the traditional examples of complex category formation used to illustrate the problems of
the fuzzy logic approach, is the formation of a Pet-Fish Category from constituent categories Pet and Fish.
The category of Pet-Fish is obtained here by traditional intersection (minimum operator) of constituent fuzzy
sets. As we can see, the problem is that we wanted a higher value for Guppy in the Pet-Fish category than
in either of its constituents. We could have obtained that value by utilizing another operator such as a
'compensatory-AND' [Zimmerman and Zysno, 1980]; however, that would also cause the membership values
of the other elements to increase to undesirable results (figure 5). The bottom line is that with a pure fuzzy
set model, each element of the categories being combined needs a different aggregation operation — this
makes fuzzy set models very cumbersome.

According to Türk·en's [1986] construction of IVFS's based on normal forms, the intersection of
two fuzzy sets, A and B, results in an IVFS I:

I(ABB)
 I
ABBI II (AAB)B (AAB c)B (A cAB)

I have used here both the traditional max-min operators as well as the conjugate pair of t-norms
and t-conorms referred to as bold intersection and union: T(a, b) = max (0, a + b - 1) and S(a, b) = min (1,



71

Figure 6: IVFS Model of Pet-Fish, with max-min and bold
T-norm T-conorm pairs

0.4

0.1

0.5

Uncertainty Increasing Uncertainty Decreasing
(Templates)

Figure 7: Example of the Belief-Constrained Approximate Reasoning Operations in the Pet-Fish
Example

a + b), for the same constituent categories Pet
and Fish of the previous example. We can see
that in this particular case the max-min opera-
tors did not yield very good results, though the
bold operators give a good representation of
what we were looking for (figure 6). Notice,
particularly in the bold case, how the IVFS rep-
resentation enhances and accounts for the char
acteristics of both constituent concepts. In the
case of Guppy, the result is a large interval of membership (high nonspecificity), which simply represents
our lack of knowledge regarding this element: its membership can vary within a large interval which ac-
knowledges the need for context information; something the fuzzy set model could not accomplish. Also,
in this case, one single operation was enough to obtain coherent results for the entire category. However,
context is not explicitly accounted for, also contextual conflict is not allowed. Another shortcoming refers
to the fact that this model acknowledges the increase in uncertainty when two fuzzy sets are combined (into
an IVFS), but how should two IVFS themselves be combined? Should the uncertainty type increase again?

Figure 7 shows how evidence sets can be used to better model this situation. Now, the category of
Pet allows for three different contexts: “playful, Interactive, Companion”, “Controllable and Tidy”, and
“Cuddly and Cute”. I have graded these contexts, respectively, with the following values of the basic
probability assignment: {0.5, 0.1, 0.4}. Fish is given by a simple IVFS. Notice that Guppy in the category
of Pet instead of being ascribed a very fuzzy value of membership as the fuzzy set representation did (dotted
line in figure 7), receives instead a very conflicting, contextual, not very fuzzy, membership. This shows that
actually our positioning of Guppy in the category of Pet is very contextually dependent. Figure 7 exemplifies
what the several operations yield for this combination. Notice that the uncertainty decreasing operation,
yields a very accurate category of Pet-Fish for this toy example.
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7. Evidence Sets and Evidence Theory

So far, I have discussed set structures as models of cognitive categories, from crisp sets to evidence
sets I have stressed that any mathematical model of cognitive categories must offer (i) degrees of inclusion
in the category/set, (ii) an accurate account of uncertainty forms in their membership values, and (iii) a way
in for context-dependencies and subjective aspects of categories. I have proposed that evidence sets fulfill
these three requirements. A natural question now is, why is Evidence Theory not enough by itself  to
effectively model cognitive categories? 

Evidence theory is usually thought of in terms of universes of possibilities, that is, frames of
discernment. A subset of such an universe is understood as representing the possible values for some
proposition, “thus the propositions of interest are in a one-to-one correspondence with the subsets of [the
frame of discernment]” [Shafer, 1976, page 36]. Alternatively, we can also think of the frame of discernment
as the universe of possible values for a variable x. If our variable represents the possible elements of a
universe of discourse, then a category can be defined as a body of evidence defined on such universe. Each
focal element, can be seen as a possible perspective for the category.

7.1 Upper and Lower Probabilities Interpretation

Let us consider that a category is defined by a body of evidence (5, m) on a universal set X. In other

words, the category will be defined by a set 5 of subsets of X (focal elements) with associated basic
probability assignment m. Plausibility and belief measures can be constructed from  (5, m) as defined in
section 2.2. Following Dempster’s [1967] original interpretation of plausibility and belief measures as upper
and lower probabilities, respectively, we can understand these probability limits as offering a nonspecific
(interval-valued) membership of subsets of X in the category, which would satisfy the first requirement
above. Nonetheless, several problems are encountered with this model of categories. First, notice that the
basic probability assignment values must add up to one (eq. 3), this constrains the category as it introduces
a dependency on its elements. That is, because of the probabilistic constraint, the value of membership of
an element, which would be given here by the belief-plausibility interval, would be constrained by the value
of membership of other elements. Specifically, their individual membership is not free to attain any value
as it is desired of a set structure or a cognitive category. 

Furthermore, membership in a category (upper and lower probabilities) is not attributed to
singletons but to subsets of the universal set. In addition, the second and third requirements would not be
satisfied as conflict would not be captured in the individual membership values and no account of context
is included.

7.2 Belief Interpretation

Consider now that a category is still defined by the body of evidence (5, m), only now, more in line
with Shafer’s [1976] interpretation, the basic probability assignment function m will identify the portions
of belief ascribed exactly to the focal elements 5. This way, each exact portion of belief and its associated
focal element can be related to a particular context in a larger imbedding model. In other words, the sort of
categories we obtain with this interpretation are formed by crisp subsets of the frame of discernment with
associated belief values: membership is all or nothing, but  belief is graded. In a way, we have classic
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categories with an account of belief, subjectivity, and a way in for context-dependencies in a larger model
of categorization. Clearly, this interpretation satisfies the third requirement but not the first and the second
(remember that accurate accounts of uncertainty forms are desired in membership values, not in the
definitions of focal elements in the universal set X).

7.3 Generalized Dempster-Shafer Theory

Several ways of extending the Dempster-Shafer theory of evidence into a fuzzy set framework have
been proposed, but probably the most general and well known approach is John Yen’s [1990] generalization.
Basically, though with many interesting consequences beyond the scope of this dissertation, the idea is to
move from crisp focal elements to fuzzy focal elements. In this case, we no longer have classical, all-or-none,
categories but introduce degrees of membership, thus satisfying the first requirement in addition to the third
requirement already satisfied by the second interpretation of evidence theory in the previous section.
Naturally, to satisfy the second requirement, that is, to obtain an accurate account of uncertainty forms in the
membership degrees of a set/category’s elements, we can extend the fuzzy focal elements to interval-valued
focal elements, or even more generally to sets of fuzzy sets. This seems to satisfy all of the three
requirements above, so, why are evidence sets preferable over generalized evidence theory as models of
categories? The next subsection should answer this question.

7.4 Evidence Sets : Independent Membership

Evidence sets have unconstrained membership; that is, the values of membership for each element
x (singleton) of the universal set X are independent of each other. In contrast, the categories defined solely
with evidence theory in the previous sections, are set oriented, that is, they define categories with focal
elements which are subsets of X. Thus, the evidence a particular context offers is associated with a set of
singletons rather than with a singleton itself. Naturally, a singleton can also be represented by a set, but if
focal elements are singletons, then we will need many focal elements to represent a category, and since their
respective evidential weights given by the basic probability assignment must add up to one, each singleton
will necessarily have a small degree of belief associated with it. In other words, the belief we have that a
certain singleton belongs to a category, will be dependent on the belief we ascribe to other singletons. This
kind of dependence is not desirable of a model of a category. Like a set structure, the inclusion of an element
in a category should not necessarily be dependent on other elements already included in it. A larger model
of categorization may impose these constraints at a higher level, but the basic mathematical structures used
should not impose them at the onset.

An evidence set allows a complete separation of membership and belief between elements in a
category since an account of belief is not used to constrain the elements of the universal set but to constrain
their individual membership values in the unit interval. Thus, the membership/belief of an element x is
independent from that of another element y. It is important to realize that belief is still constrained for each
individual membership qualification, in other words, the basic probability assignment used to qualify the
possible intervals of membership, must still add up to one. This is so because even though the membership
of an element in a category should not be constrained by that of another (free membership), the evidential
qualification of possible intervals of membership for each element must add to one to maintain Shafer’s
[1976] convention that the total belief in an evidential situation has measure one (constrained belief) — all
recognizable evidence, regarding a particular element, is made to add up to one. With this independent
quantifiability of membership/belief for each element in a universal set, the contexts that affect an element’s
membership in a category can be completely different from element to element, a desirable characteristic for



74

Figure 1: DST captures categories as all-or-nothing sets which are subjectively, and
contextually constrained. Generalized DST adds fuzzy membership, but still
membership is not independent but probabilistically constrained. Evidence sets provide
independent membership and a constrained, belief-based qualification of this
membership.

radial categories. A graphical comparison of categories as modeled by DST, Generalized DST, and evidence
sets is shown in figure 8.


